On Verlinde-Like Formulas in cp,1 Logarithmic Conformal Field Theories

نویسنده

  • Michael Flohr
چکیده

Two different approaches to calculate the fusion rules of the cp,1 series of logarithmic conformal field theories are discussed. Both are based on the modular transformation properties of a basis of chiral vacuum torus amplitudes, which contains the characters of the irreducible representations. One of these is an extension, which we develop here for a non-semisimple generalisation of the Verlinde formula introduced by Fuchs et al., to include fusion products with indecomposable representations. The other uses the Verlinde formula in its usual form and gets the fusion coefficients in the limit, in which the basis of torus amplitudes degenerates to the linear dependent set of characters of irreducible and indecomposable representations. We discuss the effects, which this linear dependence has on any result for fusion rules, which are calculated from these character’s modular transformation properties. We show that the two presented methods are equivalent. Furthermore we calculate explicit BPZ-like expressions for the resulting fusion rules for all p larger than 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Point Functions and Logarithmic Boundary Operators in Boundary Logarithmic Conformal Field Theories

Amongst conformal field theories, there exist logarithmic conformal field theories such as cp,1 models. We have investigated cp,q models with a boundary in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. We have also found the relations between coefficients in the two-point functions and correlation functions ...

متن کامل

The Verlinde formula in logarithmic CFT

In rational conformal field theory, the Verlinde formula computes the fusion coefficients from the modular S-transformations of the characters of the chiral algebra’s representations. Generalising this formula to logarithmic models has proven rather difficult for a variety of reasons. Here, a recently proposed formalism [1] for the modular properties of certain classes of logarithmic theories i...

متن کامل

Two-Point Functions and Boundary States in Boundary Logarithmic Conformal Field Theories

Amongst conformal field theories, there exist logarithmic conformal field theories such as cp,1 models, various WZNW models, and a large variety of statistical models. It is well known that these theories generally contain a Jordan cell structure, which is a reducible but indecomposable representation. Our main aim in this thesis is to address the results and prospects of boundary logarithmic c...

متن کامل

Bits and Pieces in Logarithmic Conformal Field Theory

These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be u...

متن کامل

Thermodynamics of Conformal Field Theories and Cosmology

We study the ratio of the entropy to the total energy in conformal field theories at finite temperature. For the free field realizations of N = 4 super Yang-Mills theory in D = 4 and the (2, 0) tensor multiplet in D = 6, the ratio is bounded from above. The corresponding bounds are less stringent than the recently proposed Verlinde bound. For strongly coupled CFTs with AdS duals, we show that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007